USN

Seventh Semester B.E. Degree Examination, December 2010 Image Processing

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions, selecting at least TWO questions from each part.

- 2. Missing data may be suitably used.
- 3. Draw neat diagrams wherever necessary.

PART - A

a. Explain the process of image acquisition, using sensor strips and sensor arrays. (12 Marks)

b. Explain the following terms:

- i) Adjacency; ii) Connectivity; iii) Gray level resolution; iv) Spatial resolution.
 (08 Marks)
- 2 a. Explain the process of image sampling and quantization in the digital image formulation.

(10 Marks)

b. Explain some of the widely used gray – level transformations.

(10 Marks)

- 3 a. Explain the histogram equalization technique for image enhancement. Also give the digital formation for the same. (10 Marks)
 - b. Perform histogram equalization of the image,

(10 Marks)

4 a. Explain the homomorphic filtering approach for image enhancement.

(10 Marks)

b. Compute the median value of the marked pixels shown in the Fig.Q.4(b), using a 3 x 3 mask. (10 Marks)

Fig.Q.4(b).
$$\begin{bmatrix} 18 & 22 & 33 & 25 & 32 & 24 \\ 34 & \boxed{128} & \boxed{24} & \boxed{172} & \boxed{26} & 23 \\ 22 & 19 & 32 & 31 & 28 & 26 \end{bmatrix}$$

PART - B

a. Explain HADAMARD transform and its applications.

(10 Marks)

b. Compute the Discrete Cosine Transform (DCT) matrix for N = 4.

(10 Marks)

- 6 a. Define the process of image restoration. Explain the order statistics filter for restoring images in the presence of noise. (10 Marks)
 - b. Explain the following methods to estimate the degradation function, used in image restoration: i) Estimation by image observation; ii) Estimation by experiment; iii) Mathematic modelling. (10 Marks)
- 7 a. Explain the following color models: i) RGB color model; ii) HIS color model. (10 Marks)
 - b. Explain the procedure in converting colors from RGB to HIS and vice versa. (10 Marks)
- **8** Write short notes on:
 - a. Noise models;

b. Smoothing frequency domain filters.

c. Power – law transformation;

d. KL transform.

(20 Marks)

* * * * *

